Site-specific mutational analysis of a novel cysteine motif proposed to ligate the 4Fe-4S cluster in the iron-sulfur flavoprotein of the thermophilic methanoarchaeon Methanosarcina thermophila.
نویسندگان
چکیده
Isf (iron-sulfur flavoprotein) from Methanosarcina thermophila has been produced in Escherichia coli as a dimer containing two 4Fe-4S clusters and two FMN (flavin mononucleotide) cofactors. The deduced sequence of Isf contains six cysteines (Cys 16, Cys 47, Cys 50, Cys 53, Cys 59, and Cys 180), four of which (Cys 47, Cys 50, Cys 53, and Cys 59) comprise a motif with high identity to a motif (CX(2)CX(2)CX(4-7)C) present in all homologous Isf sequences available in the databases. The spacing of the motif is highly compact and atypical of motifs coordinating known 4Fe-4S clusters; therefore, all six cysteines in Isf from M. thermophila were altered to either alanine or serine to obtain corroborating biochemical evidence that the motif coordinates the 4Fe-4S cluster and to further characterize properties of the cluster dependent on ligation. All except the C16S variant were produced in inclusion bodies and were void of iron-sulfur clusters and FMN. Reconstitution of the iron-sulfur cluster and FMN was attempted for each variant. The UV-visible spectra of all reconstituted variants indicated the presence of iron-sulfur clusters and FMN. The reduced C16A/S variants showed the same electron paramagnetic resonance (EPR) spectra as wild-type Isf, whereas the reduced C180A/S variants showed EPR spectra identical to those of one of the two 4Fe-4S species present in the wild-type Isf spectrum. Conversely, EPR spectra of the oxidized C50A and C59A variants showed g values characteristic of a 3Fe-4S cluster. The spectra of the C47A and C53A variants indicated a 4Fe-4S cluster with g values and linewidths different from those for the wild type. The combined results of this study support a role for the novel CX(2)CX(2)CX(4-7)C motif in ligating the 4Fe-4S clusters in Isf and Isf homologues.
منابع مشابه
Iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila is the prototype of a widely distributed family.
A total of 35 homologs of the iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila were identified in databases. All three domains were represented, and multiple homologs were present in several species. An unusually compact cysteine motif ligating the 4Fe-4S cluster in Isf is conserved in all of the homologs except two, in which either an aspartate or a histidine has replaced the sec...
متن کاملStructures of the iron-sulfur flavoproteins from Methanosarcina thermophila and Archaeoglobus fulgidus.
Iron-sulfur flavoproteins (ISF) constitute a widespread family of redox-active proteins in anaerobic prokaryotes. Based on sequence homologies, their overall structure is expected to be similar to that of flavodoxins, but in addition to a flavin mononucleotide cofactor they also contain a cubane-type [4Fe:4S] cluster. In order to gain further insight into the function and properties of ISF, the...
متن کاملPyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
Pyruvate formate lyase activating enzyme is a member of a novel superfamily of enzymes that utilize S-adenosylmethionine to initiate radical catalysis. This enzyme has been isolated with several different iron-sulfur clusters, but single turnover monitored by EPR has identified the [4Fe-4S](1+) cluster as the catalytically active cluster; this cluster is believed to be oxidized to the [4Fe-4S](...
متن کاملThe [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster.
The active site of [Fe-Fe]-hydrogenases is composed of a di-iron complex, where the two metal atoms are bridged together by a putative di(thiomethyl)amine molecule and are also ligated by di-nuclear ligands, namely carbon monoxide and cyanide. Biosynthesis of this metal site is thought to require specific protein machinery coded by the hydE, hydF, and hydG genes. The HydF protein has been clone...
متن کاملA cysteine-rich CCG domain contains a novel [4Fe-4S] cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis.
Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]3+ cluster with CoM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 19 شماره
صفحات -
تاریخ انتشار 2000